Loop abort Faults on Lattice-Based Fiat-Shamir & Hash'n Sign signatures
نویسندگان
چکیده
As the advent of general-purpose quantum computers appears to be drawing closer, agencies and advisory bodies have started recommending that we prepare the transition away from factoring and discrete logarithm-based cryptography, and towards postquantum secure constructions, such as lattice-based schemes. Almost all primitives of classical cryptography (and more!) can be realized with lattices, and the efficiency of primitives like encryption and signatures has gradually improved to the point that key sizes are competitive with RSA at similar security levels, and fast performance can be achieved both in software and hardware. However, little research has been conducted on physical attacks targeting concrete implementations of postquantum cryptography in general and lattice-based schemes in particular, and such research is essential if lattices are going to replace RSA and elliptic curves in our devices and smart cards. In this paper, we look in particular at fault attacks against some instances of the Fiat-Shamir family of signature scheme on lattices (BLISS, GLP, TESLA and PASSSign) and on the GPV scheme, member of the Hash’n Sign family. Some of these schemes have achieved record-setting efficiency in software and hardware. We present several possible fault attacks, one of which allows a full key recovery with as little as a single faulty signature, and discuss possible countermeasures to mitigate these attacks.
منابع مشابه
Loop-Abort Faults on Lattice-Based Fiat-Shamir and Hash-and-Sign Signatures
As the advent of general-purpose quantum computers appears to be drawing closer, agencies and advisory bodies have started recommending that we prepare the transition away from factoring and discrete logarithm-based cryptography, and towards postquantum secure constructions, such as latticebased schemes. Almost all primitives of classical cryptography (and more!) can be realized with lattices, ...
متن کاملOn the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract)
We present a theoretical model for breaking various cryptographic schemes by taking advantage of random hardware faults. We show how to attack certain implementations of RSA and Rabin signatures. An implementation of RSA based on the Chinese Remainder Theorem can be broken using a single erroneous signature. Other implementations can be broken using a larger number of erroneous signatures. We a...
متن کاملRelaxed Lattice-Based Signatures with Short Zero-Knowledge Proofs
Higher-level cryptographic privacy-enhancing protocols such as anonymous credentials, voting schemes, and e-cash are often constructed by suitably combining signature, commitment, and encryption schemes with zero-knowledge proofs. Indeed, a large body of protocols have been constructed in that manner from Camenisch-Lysyanskaya signatures and generalized Schnorr proofs. In this paper, we build a...
متن کاملA Second Look at Fischlin's Transformation
Fischlin’s transformation is an alternative to the standard Fiat-Shamir transform to turn a certain class of public key identification schemes into digital signatures (in the random oracle model). We show that signatures obtained via Fischlin’s transformation are existentially unforgeable even in case the adversary is allowed to get arbitrary (yet bounded) information on the entire state of the...
متن کاملOn the Importance of Checking Computations
We present a theoretical model for breaking various cryptographic schemes by taking advantage of random hardware faults. We show how to attack certain implementations of RSA and Rabin signatures. We also show how various authentication protocols, such as Fiat-Shamir and Schnorr, can be broken using hardware faults.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016